Homework \#5 (10 points) - Show all work on the following problems:

Problem 1 (2 points): Find the average potential over a spherical surface of radius R due to a point charge located inside the sphere (not at the center).

Problem 2 (2 points): In 1-d, the functional form of the general solution to Laplace's equation is $V(x)=m x+b$.

2a (1 point): Find the functional form of the general solution to Laplace's equation in 3-d spherical coordinates for the case where V only depends on the radial coordinate r.

2b (1 point): Find the functional form of the general solution to Laplace's equation in 3-d cylindrical coordinates for the case where V only depends on the radial coordinate s.

Problem 3 (2 points): Consider an infinite grounded conducting plane with two charges above the plane: $-2 q$ at height d, and $+q$ and height $3 d$. Use image charges to determine the force on the upper charge $(+q)$.

Problem 4 (4 points): Consider a point charge q at a distance a from the center of a grounded conducting sphere of radius R (with $a>R$), as in Example 3.2 in Griffiths.

4a (1 point): Use the law of cosines to show that you can write
$V(r, \theta)=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{\sqrt{r^{2}+a^{2}-2 \operatorname{racos} \theta}}-\frac{q}{\sqrt{R^{2}+\left(\frac{r a}{R}\right)^{2}-2 \operatorname{racos} \theta}}\right]$
4b (1 point): Use the boundary conditions on the electric field (and thus the normal derivative of V) at the surface of the sphere to find the induced surface charge density σ on the sphere, as a function of θ.

4c (1 point): Integrate the charge density over the surface of the sphere to find the total induced charge.

4d (1 point): Calculate the energy of this configuration by determining the energy required to bring the charge q from infinity.

